Learning to Evade Static PE Machine Learning Malware Models via Reinforcement Learning

نویسندگان

  • Hyrum S. Anderson
  • Anant Kharkar
  • Bobby Filar
  • David Evans
  • Phil Roth
چکیده

Machine learning is a popular approach to signatureless malware detection because it can generalize to never-before-seen malware families and polymorphic strains. This has resulted in its practical use for either primary detection engines or for supplementary heuristic detection by anti-malware vendors. Recent work in adversarial machine learning has shown that deep learning models are susceptible to gradient-based attacks, whereas non-differentiable models that report a score can be attacked by genetic algorithms that aim to systematically reduce the score. We propose a more general framework based on reinforcement learning (RL) for attacking static portable executable (PE) anti-malware engines. The general framework does not require a differentiable model nor does it require the engine to produce a score. Instead, an RL agent is equipped with a set of functionality-preserving operations that it may perform on the PE file. Through a series of games played against the anti-malware engine, it learns which sequences of operations are likely to result in evading the detector for any given malware sample. This enables completely black-box attacks against static PE anti-malware, and produces functional evasive malware samples as a direct result. We show in experiments that our method can attack a gradient-boosted machine learning model with evasion rates that are substantial and appear to be strongly dependent on the dataset. We demonstrate that attacks against this model appear to also evade components of publicly hosted antivirus engines. Adversarial training results are also presented: by retraining the model on evasive ransomware samples, a subsequent attack is 33% less effective. Importantly, we release an OpenAI gym to allow researchers to study evasion rates against their own machine learning models, malware samples, and their own RL agents. We also outline practical limitations with this approach that we hope will beneficial to future research.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evading Machine Learning Malware Detection

Machine learning is a popular approach to signatureless malware detection because it can generalize to never-beforeseen malware families and polymorphic strains. This has resulted in its practical use for either primary detection engines or supplementary heuristic detections by anti-malware vendors. Recent work in adversarial machine learning has shown that models are susceptible to gradient-ba...

متن کامل

A New Android Malware Detection Method Using Bayesian Classification

Mobile malware has been growing in scale and complexity as smartphone usage continues to rise. Android has surpassed other mobile platforms as the most popular whilst also witnessing a dramatic increase in malware targeting the platform. A worrying trend that is emerging is the increasing sophistication of Android malware to evade detection by traditional signature-based scanners. As such, Andr...

متن کامل

Improving Malware Detection Accuracy by Extracting Icon Information

Detecting PE malware files is now commonly approached using statistical and machine learning models. While these models commonly use features extracted from the structure of PE files, we propose that icons from these files can also help better predict malware. We propose an innovative machine learning approach to extract information from icons. Our proposed approach consists of two steps: 1) ex...

متن کامل

Analysis of Bayesian classification-based approaches for Android malware detection

Mobile malware has been growing in scale and complexity spurred by the unabated uptake of smartphones worldwide. Android is fast becoming the most popular mobile platform resulting in sharp increase in malware targeting the platform. Additionally, Android malware is evolving rapidly to evade detection by traditional signature-based scanning. Despite current detection measures in place, timely d...

متن کامل

A Static Malware Detection System Using Data Mining Methods

A serious threat today is malicious executables. It is designed to damage computer system and some of them spread over network without the knowledge of the owner using the system. Two approaches have been derived for it i.e. Signature Based Detection and Heuristic Based Detection. These approaches performed well against known malicious programs but cannot catch the new malicious programs. Diffe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1801.08917  شماره 

صفحات  -

تاریخ انتشار 2018